
Computational experience with sequential and
parallel, preconditioned Jacobi–Davidson for large,

sparse symmetric matrices

Luca Bergamaschi a, Giorgio Pini a, Flavio Sartoretto b,*

a Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Universit�aa di Padova, Via Belzoni, 7, 35131 Padova PD, Italy
b Dipartimento di Informatica Universit�aa di Venezia, Via Torino 155, 30171 Mestre VE, Italy

Received 7 February 2002; received in revised form 22 November 2002; accepted 3 March 2003

Abstract

The Jacobi–Davidson (JD) algorithm was recently proposed for evaluating a number of the eigenvalues of a matrix.

JD goes beyond pure Krylov-space techniques; it cleverly expands its search space, by solving the so-called correction

equation, thus in principle providing a more powerful method. Preconditioning the Jacobi–Davidson correction

equation is mandatory when large, sparse matrices are analyzed. We considered several preconditioners: Classical

block-Jacobi, and IC(0), together with approximate inverse (AINV or FSAI) preconditioners. The rationale for using

approximate inverse preconditioners is their high parallelization potential, combined with their efficiency in accelerating

the iterative solution of the correction equation. Analysis was carried on the sequential performance of preconditioned

JD for the spectral decomposition of large, sparse matrices, which originate in the numerical integration of partial

differential equations arising in physical and engineering problems. It was found that JD is highly sensitive to pre-

conditioning, and it can display an irregular convergence behavior. We parallelized JD by data-splitting techniques,

combining them with techniques to reduce the amount of communication data. Our own parallel, preconditioned code

was executed on a dedicated parallel machine, and we present the results of our experiments. Our JD code provides an

appreciable parallel degree of computation. Its performance was also compared with those of PARPACK and parallel

DACG.

� 2003 Elsevier Science B.V. All rights reserved.

AMS: 65F15; 65F50

Keywords: Eigenvalues; Sparse approximate inverses; Parallel algorithms; Jacobi–Davidson method

Journal of Computational Physics 188 (2003) 318–331

www.elsevier.com/locate/jcp

*Corresponding author. Fax: +39-049-827-5995.

E-mail address: sartoret@dmsa.unipd.it (F. Sartoretto).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00190-6

mail to: sartoret@dmsa.unipd.it


1. Introduction

An important task in many scientific applications is the computation of a small number of the leftmost

eigenpairs (the smallest eigenvalues and corresponding eigenvectors) of the problem Ax ¼ kx, where A is a

large, sparse, symmetric positive definite (SPD) matrix. Several techniques for solving this problem have

been proposed: Subspace iteration [3,31], Lanczos method [14,23,30]; more recently, the restarted Arnoldi–

Lanczos algorithm [24], the Jacobi–Davidson method [34], hereafter labeled JD, and optimization methods

by Conjugate Gradient schemes [5,21,33].
In this paper we examine the performance of JD method, which was analyzed in [34] by Sleijpen and Van

der Vorst. This paper is not intended to tune JD parameters, a common task in literature, that we ac-

complished for our problems e.g. in [10]. Our main aim is to show the difficulties that even an expert in

eigenvalue computations, not familiar with JD, can face with. The main contribution of the paper is to

report on computational experience with various preconditioners on both sequential and parallel com-

puters, when solving real-life problems. Computational experiences with Jacobi–Davidson on parallel

computers are not yet widespread in literature. Our paper is a contribution to this important topic.

JD is a Rayleigh–Ritz method which relies upon the solution of the so-called correction equation [34] to
enlarge its search space. When large, sparse matrices are considered, an iterative, preconditioned Krylov

solver is a suitable choice for computing a solution. We exploit four types of preconditioners, classical

block-Jacobi, Incomplete Cholesky, IC(0) [27], the factorized approximate inverse AINV [4], and FSAI

[22].

Using our optimization method, called DACG [7], we found that in sequential runs IC(0) is the most

effective preconditioner for solving shift-invert equations involving our large, sparse matrices (see [10]), thus

one can guess it is a suitable choice also for JD. However, in view of developing a parallel code, it must be

remembered that IC(0) preconditioning is not easy to parallelize efficiently. Therefore we also consider
Block-Jacobi, AINV and FSAI preconditioners, which are much more efficiently parallelized. We studied

the performance of sequential Block-Jacobi-JD, ILU(0)-JD, AINV–JD, and FSAI–JD algorithms in the

eigenanalysis of Finite Element, Mixed Finite Element, and Finite Difference 2D and 3D models arising in

real-life flow problems.

The JD technique, being oriented to large, sparse matrices, is especially suitable to a parallel environ-

ment. Some recent references on parallel (or parallelizable) variants of JD are [17,28]. We implemented a

parallel version of the JD algorithm via a data-parallel approach, allowing preconditioning by any given

approximate inverse. Ad hoc data-distribution techniques were also implemented, in order to reduce the
amount of communication among processors, which could spoil the parallel performance of the ensuing

code. An efficient routine for performing parallel matrix–vector products was designed and carried out.

These parallelization techniques were successfully exploited in parallelizing our DACG code for the ei-

gensolution of sparse matrices [8].

Our parallel preconditioned JD code was used in the solution of several problems, arising in physics and

engineering. Numerical tests on a Cray T3E Supercomputer show the appreciable degree of parallelization

attainable by our code.

This paper is organized as follows. Section 2 gives an outline of the JD algorithm. Section 3 describes the
preconditioners. Numerical results are discussed in Section 4. Conclusions are drawn in Section 5.

2. Preconditioned Jacobi–Davidson algorithm

Let us consider the eigenproblem

Ax ¼ kx; ð1Þ

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 319



where A is a large, sparse SPD, N � N matrix. The eigenvalues and corresponding eigenvectors are denoted

by k16 k26 � � � 6 kN , and u1; u2; . . . ; uN , respectively.

It is assumed that we need to compute kmax eigenpairs, (ki; ui), i ¼ 1; . . . ; kmax, which are close to a given
value h.
The JD algorithm computes each eigenvalue, kj, by taking some Ritz values in a search space which

is iteratively expanded by search vectors, t. They are the solutions of the so called correction equation

[34]

PðA � ~kkIÞPt ¼ �r; P ¼ ðI � QQTÞ; t ? spanfQg: ð2Þ

Table 1

JD Algorithm (unpreconditioned Jacobi–Davidson) for computing kmax exterior eigenpairs

begin

Set V:;0 starting vector and h reference value; Set s; nit;max;mmin;mmax;

t :¼ V:;0; k :¼ 0; m :¼ 0; U :¼ ½ �; nit :¼ 0;

while ðk < kmaxÞ and ðnit < nit;maxÞ do nit :¼ nit þ 1;

for i :¼ 1;m do

t :¼ t � ðVT
:;itÞV:;i;

endfor

m :¼ mþ 1; V:;m ¼ t=ktk2; VA
:;m ¼ AV:;m;

for i :¼ 1;m do

Mi;m :¼ VT
:;iV

A
:;m;

end for

Compute the eigenpairs ðli; siÞ of the matrix M, ksik2 ¼ 1;

Sort the pairs ðli; siÞ such that jli � hjP jli�1 � hj;
u :¼ Vs1; uA :¼ VAs1; r :¼ uA � l1u;
while ðkrk2 6 s � l1Þ and ðk < kmaxÞ do

~kkkþ1 :¼ l1; U :¼ ½U j u�; k :¼ k þ 1; nit :¼ 0;

if k < kmax
then m :¼ m� 1; M :¼ 0;

for i :¼ 1;m do

V:;i :¼ Vsiþ1; VA
:;i :¼ VAsiþ1;Mi;i :¼ liþ1; si :¼ ei; li :¼ liþ1;

endfor

u :¼ V:;1; r :¼ VA
:;1 � l1u;

endif

endwhile

if k < kmax
then

if mPmmax

then M ¼ 0;

for i :¼ 2;mmin do

V:;i :¼ Vsi; VA
:;i :¼ VAsi; Mi;i :¼ li;

endfor

V:;1 :¼ u; VA
:;1 :¼ uA; M1;1 :¼ l1; m :¼ mmin;

endif

l :¼ l1; Q :¼ ½U j u�;P ¼ ðI � QQTÞ;
Approximately solve for t ? spanfQg the problem PðA � lIÞPt ¼ �r;

endif

endwhile

if k < kmax
then print �less than kmax eigenpairs computed�;

endif

end

320 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331



Here, ~kk is a Ritz value, r is the current residual, Q is the matrix whose columns are the already computed

eigenvectors, u1; . . . ; uj�1, together with a suitable Ritz vector, u. In principle, expanding by t provides

better eigenvector guesses than the classical Krylov space. Each vector t can also be interpreted as an

approximated Newton correction step [39]. We implemented the JD algorithm shown in Table 1. The given

pseudo-code is essentially a well-structured casting of algorithm 4.17 in [2], which is suited for computing

either the smallest eigenpairs (setting h6 k1) or the largest ones (setting h P kN ). Note that for a given

matrix M, the notation M:;i stands for its ith column, while ½Mjv�, v being a column vector, means column-
wise catenation.
Since the convergence of JD is not guaranteed, we inserted a parameter, nit;max, setting the maximum

number of iterations allowed.

We found that in our problems Modified Gram–Schmidt orthogonalization is satisfactorily accurate,

and thus no iterative refinement [2] was needed.

The JD algorithm needs to assess several parameter values. Some of them are common to each iterative

eigensolver: The tolerance, s, on a suitable measure of accuracy, and the maximum number of iterations,

nit;max. Besides these, to avoid unsatisfiable memory requirements, JD needs the maximum and minimum

dimensions, mmax and mmin, of the search space, S. When dimðSÞ ¼ mmax, our JD algorithm performs a
restart step, keeping those mmin vectors corresponding to the Ritz values which are close to h [2]. A dis-

cussion of the restarting techniques proposed in literature can be found in [36].

System (2) is indefinite. We computed a solution by iterative Krylov solvers, which are well suited to

large, sparse matrices, and easily allow for t ? spanfQg, which is required by JD scheme [34]. Actually,

according to [29], system (2) is positive definite in the subspace orthogonal to spanfQg. Thus, we also
exploited JDCG, i.e. JD equipped with a Conjugate Gradient (CG) solver. System (2) need not to be ac-

curately solved, as pointed out in [35]. We performed at most nðcorrÞit;max (not too large a natural number) Krylov

iterations, stopping the process as soon as the 2-norm of the relative residual is smaller than a prescribed
(not too small) tolerance, sðcorrÞ. The alternative strategy suggested in [2, p. 93], was also tested. Note that in
the sequel the term inner iterations denotes the iterations performed to solve the correction equation (2) by

Krylov methods.

System (2) is usually ill-conditioned, nearly degenerate, thus preconditioning is mandatory to achieve

even poor accuracy, when a small number of iterations is allowed. JD scheme requires that the vector t is

orthogonal to spanðQÞ, thus projected preconditioning matrices must be considered. To efficiently perform
the projections, we implemented Algorithm 4.15 on page 94 in [2]. The preconditioned system can be

written

~YY~AAt ¼ b; ~AA ¼ PðA � ~kkIÞP; b ¼ �~YYr; ~YY ¼ PYP; ð3Þ

where the matrix Y is the preconditioner.

3. Preconditioners

The matrix C ¼ A � ~kkI in Eq. (2) is frequently nearly singular and indefinite, hence care must be taken

in selecting a preconditioner. We computed the preconditioner for the matrix A, rather than the whole C.

Being A positive definite, disregarding ~kkI allows for safe preconditioners. Moreover, the preconditioner
can be computed only at process start, irrespective of the value of ~kk, which changes throughout the

iterations.

Block-Jacobi, Incomplete Cholesky, AINV, and FSAI preconditioners were used.

Block-Jacobi, in the sequel called Jacobi(k) for shortness, amounts to setting Y ¼ D�1 in Eq. (3), where

D�1 is the inverse of the block-diagonal matrix obtained by selecting the k-size diagonal blocks of A,

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 321



starting from the upper-left one. We made use of block dimensions 1, 2, and 3. Our experience suggests (see

for example [7]) that when solving by iterative methods linear systems involving our test matrices, larger

blocks do not provide appreciably faster convergence, in terms of CPU time.

Let L be the Incomplete Cholesky, IC(0), lower triangular matrix, i.e. the incomplete Cholesky factor of

A [27]. IC(0)-preconditioning corresponds to choosing Y ¼ ðLLTÞ�1, in Eq. (3).
Parallelizing the preconditioning by IC(0) requires sophisticated strategies, like graph coloring [19,20],

graph partitioning and ordering [1,18], or domain decomposition methods [25], whilst approximate inverse

preconditioners are more easily parallelizable [12,13]. Among these preconditioning techniques, AINV and
FSAI were exploited.

The approximate inverse preconditioner AINV [4] and the FSAI preconditioner [22] explicitly compute an

approximation to A�1, based on its sparse factorization. The pattern of FSAI was identified by annihilating

the elements outside the pattern of A, while the pattern of AINV was build by canceling out those elements

whose absolute value is smaller than a drop tolerance, �. The smaller � is, the larger is the number of non-
zero elements in the AINV preconditioning factor. A sparse approximate inverse of A, Y ¼ ZZT, is then

identified, where Z is an upper triangular matrix.

4. Numerical results

Table 2 shows the main characteristics of our test matrices, including their bandwidth, i.e. max ji� jj
over all Aij 6¼ 0, and their condition numbers, K ¼ kN=k1, which range from small (103) to large (107)

values. We exploited JD scheme to compute a number of their smallest eigenpairs, by setting h ¼ 0. The

matrices arise from the discretization of parabolic and elliptic equations in two and three dimensions.

Problem 1 is the result of Mixed Finite Element (MFE) discretization of the linearized 2D Richard�s
equation [9]. Problems 2, 3, and 4 arise from FE discretization of 3D flow equations [16]. Problem 5 comes

from a standard 3D Laplacean discretization, applying 7-point centered Finite Differences. The latter

problem is a theoretical test case, that was added as a reference. These matrices are representative of the

larger set of test matrices which was analyzed.

Table 3 sketches the relative gaps,

cðrÞ
i ¼ min

j>i;kj 6¼ki
ðkj � kiÞ=k1;

on the smallest s ¼ 10 eigenvalues of our test matrices. Note that the N ¼ 216,000 FD matrix discretizing

the Laplacean on a regular grid, has a peculiar gap-distribution, which is different from FE and MFE

matrices. In literature, testing JD on such FD matrices is usual, but reading the sequel, one can find out that

it does not account for JD performance on our real-life problems.

Table 2

Main characteristics of our sample problems

Nos. Problem N Nnz kN=k1 Bandwidth

1 2D-MFE 28,600 142,204 7:94� 105 239

2 3D-FE 42,189 602,085 4:21� 103 2009

3 3D-FE 80,711 325,835 2:42� 107 9381

4 3D-FE 152,207 2,211,955 7:26� 104 1507

5 3D-FD 216,000 1,490,400 1:50� 103 3600

N , matrix size; Nnz, number of non-zero elements in matrix A; FE, Finite Elements; FD, Finite Differences; MFE, Mixed Finite

Elements.

322 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331



4.1. Sequential JD

We performed sequential JD runs on a dedicated DEC ALPHA 500 MHz machine, with 1536 MB RAM.

Our Fortran code was compiled using DIGITAL Fortran 77 v. X5.2-183 with options -O -tune¼
ev6 -arch¼ev6. When only our code was running, the CPU time spent by the JD algorithm was mea-

sured, irrespective of the time needed for I/O and for computing the preconditioning factors.
Table 4 shows some features of our preconditioning factors, i.e. the number of non-zero elements and

the CPU seconds for computing each factor. The time consumed is negligible with respect to the overall

sequential time for computing even a small number of eigenvalues (cf. Table 7).

Concerning the choice of the Krylov solver, experiments with GMRES, CGS [32], and Bi-CGSTAB [38]

were performed by our group [6]. Further experiments with TFQMR [15] were also carried out. Analyzing

our ill-conditioned matrices, we found that usually when TFQMR, GMRES and CGS are exploited, JD

either fails to converge or provides slower convergence than using Bi-CGSTAB. In the sequel, the cor-

rection equation in JD will be solved by either (preconditioned) Bi-CGSTAB technique (JDBi-CGSTAB,
hereafter called for shortness JD), or CG solver (JDCG).

Table 3

Relative gaps, cðrÞ
i , between the eigenvalues

i 28,600 42,189 80,711 152,207 216,000

1 2.681 1.881 1.901 0.066 0.999

2 1.484 1.205 0.517 0.106 0.999

3 2.912 1.802 1.240 0.060 0.999

4 3.000 0.834 0.600 0.082 0.999

5 3.478 1.284 1.259 0.165 0.663

6 0.958 0.983 0.439 0.259 0.663

7 2.935 0.690 1.569 0.052 0.663

8 1.753 1.065 0.562 0.050 0.336

9 3.661 1.440 1.605 0.050 0.336

10 2.687 0.243 0.218 0.190 0.336

Table 4

Number of nonzero entries, N ðMÞ
nz , in the preconditioning factors

N IC(0) AINV(�)

� ¼ 0:1 � ¼ 0:05 � ¼ 0:025

28,600 N ðMÞ
nz 85,402 201,765 464,705 790,632

T ðMÞ 0.02 0.31 0.54 0.90

42,189 N ðMÞ
nz 322,137 141,956 341,523 601,360

T ðMÞ 0.11 0.53 0.69 1.08

80,711 N ðMÞ
nz 203,273 1,640,603 1,641,085 1,712,476

T ðMÞ 0.04 1.15 1.16 1.22

152,207 N ðMÞ
nz 1,182,081 2,594,714 3,222,199 3,798,763

T ðMÞ 0.30 4.74 6.36 8.38

216,000 N ðMÞ
nz 853,200 853,200 853,200 2,732,760

T ðMÞ 0.26 1.94 1.94 5.89

T ðMÞ gives the CPU seconds spent to sequentially compute each preconditioner.

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 323



Concerning the choice of the parameters in JD, several combinations of values were tested. Our results

suggest that suitable choices for analyzing our test matrices are: tolerance on the 2-norm of the residual,

s ¼ 10�3; search space sizes mmin ¼ 5, mmax ¼ 20; stopping parameters for inner iterations nðcorrÞitmax ¼ 26,

sðcorrÞ ¼ 10�1.

A tolerance s ¼ 10�3 is much larger than the square root of the machine precision, u, which is proposed in
[2]. However, such a tolerance is too a stringent requirement, which is far smaller than the one required in

real-life problems. In the sequel, further comments will be given.

We did not use thick restart [36] (mmin ¼ 5 < s ¼ kmax ¼ 10 holds true). Our experiments suggest that in
our problems this technique is time consuming, while it does not greatly improve the performance of the

method. Concerning the choice of search-space dimensions, note that setting mmin P s, as proposed in the
literature (see e.g. [2]) does not appreciably change the convergence.

The starting vector was set to V:;0 ¼ ð1; . . . ; 1ÞT.
Table 7 reports the CPU seconds for computing s ¼ 10 eigenpairs. Inspecting Table 7, we see that IC(0)-

JD and AINV–JD are more robust than FSAI-JD and Jacobi(k)-JD, which do not converge when

N ¼ 80,711 and N ¼ 152,207.

Focusing on AINV–JD, let us analyze how its efficiency depend upon the dropping parameter �. We
must remember that the number of non-zero elements in AINV increases for smaller �, thus increasing the
cost of applying the preconditioner. Table 5 shows the average number of inner iterations per outer iter-

ation, Ain. On inspection of this table, we can see that for problems 1, 2, and 3, switching from � ¼ 0:1 to
� ¼ 0:025, produces a better preconditioner, since Ain becomes smaller. On the other hand, the number of

non-zero elements usually increases with � (cf. Table 4), thus the computational cost of multiplying the
preconditioning factor times a vector increases. Such increase is not counterbalanced by the decrease in

the number of outer iterations, which is reported in Table 6. In four cases (cf. Table 7), when � ¼ 0:025 the
CPU time is larger than for � ¼ 0:1; 0:05. However, when N ¼ 152,207 the opposite is true; when � increases
the efficiency of AINV does not appreciably decrease, since Ain does not decrease (cf. Table 5), but the

convergence of AINV–JD turns out to be slower (cf. Table 6). We found that high dependence on the

preconditioner is peculiar to the JD scheme.

Taking these results into consideration, in our parallel computations we set � ¼ 0:1, when computing the
AINV factor.

Table 5 shows that when N ¼ 42,189Ain is smaller when Jacobi(3) is exploited. We also found that in the

same case the norm of the final residual of the correction equation is slightly smaller than employing

the other preconditioners (not shown in this paper). However, Table 6 shows that, again for N ¼ 42,189, the
largest number of outer iterations occurs when Jacobi(3) is the preconditioner. This result shows that a

more effective preconditioner, which provides a better solution to the correction equation, does not nec-

essarily give faster convergence of JD.

Table 5

Computation of s ¼ 10 eigenpairs using AINV(�), FSAI, Jacobi(k), and IC(0)

N AINV FSAI IC(0) Jacobi(k)

� ¼ 0:025 � ¼ 0:05 � ¼ 0:10 k ¼ 1 k ¼ 2 k ¼ 3

28,600 15.62 15.50 16.07 13.81 13.55 1.09 5.49 7.16

42,189 21.83 21.83 24.45 16.75 19.48 18.90 12.80 12.16

80,711 4.67 10.82 13.07 * 13.32 * * *

152,207 1.01 1.00 1.00 * 3.31 * * *

216,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average number of inner iterations performed in one (outer) iteration,Ain. The symbol ‘‘*’’ means no convergence attained within

1000 iterations.

324 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331



We also considered changing the stopping criterion in Table 1 to e.g. krk26 s �minðl1; 1Þ, in order to

reduce the tolerance when the matrix has large eigenvalues. This new criterion changes our results only for

the N ¼ 216,000 matrix, leading to more accurate eigenvalues. Once more, the eigenvalues are not computed

in ascending order.
Alternative stopping criteria for the inner iterations are proposed in [2,29,37]. Table 8 shows the results

obtained using the tolerance suggested in [2],

sðcorrÞ ¼ 2�nðcorrÞit ; ð4Þ

which depends on the number of inner iterations, nðcorrÞit 6 nðcorrÞit;max ¼ 26. Only the N ¼ 28,600 and N ¼ 42,189
matrices were considered. Indeed, the N ¼ 216,000 problem is not interesting, since the resultAin ¼ 1 from

Table 5 holds true also using the new criterion. Using four preconditioners, out of our eight ones, JD does

not converge when N ¼ 80,711 and N ¼ 152,207 (see Table 5), hence these cases gather low information.

Inspecting Table 8, one can see that a substantial change in bothAin and it turns out only when Jacobi(k) is
used. This result can be ascribed to poor efficiency of this preconditioner, which means higher nðcorrÞit values

than with other preconditioners (see Table 5), and thus a smaller 2�nðcorrÞit tolerance. In any case, from Table 8

one can infer that the total number of inner iterations, Ain � it, for computing s ¼ 10 eigenpairs, does not

depart more than 10% from AV
in � itV . Hence the variable tolerance (4) does not provide substantial

changes on JD behavior in our problems.

It is interesting to observe that JD usually computes the eigenvalues in an awkward order, when a large

tolerance on eigenvalues is admitted. Let us consider the N ¼ 216,000 matrix. Setting s ¼ 10�3,

sðcorrÞ < 10�1, using any of the proposed preconditioners, JD computes first an approximation, ~kk1, to the

smallest true eigenvalue, k1. However, the 6th eigenvalue approximation, ~kk6, computed by Jacobi(3)-JD, is
an approximation to the true eigenvalue k20; IC(0)-JD gives ~kk6 ¼ k11; AINV(0.1)-JD gives
~kk6 ¼ k5 � k6 � k7. These results do not come from errors in our implementation of JD. Both our JD code

Table 6

Same as Table 5, concerning outer iterations

N AINV FSAI IC(0) Jacobi(k)

� ¼ 0:025 � ¼ 0:05 � ¼ 0:10 k ¼ 1 k ¼ 2 k ¼ 3

28,600 34 36 43 78 42 1609 250 204

42,189 41 30 31 32 33 40 56 58

80,711 90 44 40 * 37 * * *

152,207 375 555 669 * 39 * * *

216,000 373 411 411 376 256 460 790 747

Table 7

Same as Table 5, concerning CPU seconds

N AINV FSAI IC(0) Jacobi(k)

� ¼ 0:025 � ¼ 0:05 � ¼ 0:10 k ¼ 1 k ¼ 2 k ¼ 3

28,600 46.10 34.01 28.65 49.83 24.94 129.56 52.70 54.41

42,189 79.16 50.94 55.13 44.82 66.99 36.86 45.25 45.98

80,711 139.35 114.56 120.54 * 64.87 * * *

152,207 567.69 767.69 810.65 * 89.17 * * *

216,000 522.48 429.62 433.35 388.75 369.10 329.27 725.25 726.28

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 325



and JDQR Matlab code by G. Sleijpen 1 compute identical sequences; the same holds for our JDCG code

and JDCG code by Y. Notay (hereafter called JDCG-N 2). On the other hand, setting

s < 10�7; sðcorrÞ < 10�7; ð5Þ

the eigenvalues in our problems are identified in ascending order, but as an example when N ¼ 216,000,

IC(0)-JD requires as many as 15 times the total number of inner iterations raised when s < 10�3,

sðcorrÞ < 10�1 (see Tables 5 and 6). Observe that in physical and engineering problems usually the settings (5)

are too stringent. We conclude that when s � ffiffiffi

u
p

, it is advisable to compute at least twice the number of

eigenpairs needed, like using Arnoldi and Lanczos techniques one must do.

Let us now consider IC(0)-JDCG (JD using as the inner solver CG technique, preconditioned by IC(0)).

Analyzing Table 9, one can see that IC(0)-JDCG is more CPU time consuming than JD, except when

N ¼ 42,189. Average CPU times suggest that IC(0)-JDCG is not superior to IC(0)-JD in our problems,

Table 9

Computation of s ¼ 10 eigenpairs using either our IC(0)-JD code or our IC(0)-JDCG code

N JDCG JD

Ain it CPU Ain it CPU

28,600 19.67 69 32.06 13.55 42 24.94

42,189 14.71 59 55.90 19.48 33 66.99

80,711 15.21 67 92.34 13.32 37 64.87

152,207 11.64 53 184.14 3.31 39 89.17

216,000 12.47 104 375.02 1.00 256 369.10

Average 147.89 123.01

The average number of inner iterations performed in one iteration, Ain, number of iterations, it, and CPU seconds are shown.

Table 8

Computation of s ¼ 10 eigenpairs for the N ¼ 28; 600 and N ¼ 42; 189 matrices

AINV FSAI IC(0) Jacobi(k)

� ¼ 0:025 � ¼ 0:05 � ¼ 0:10 k ¼ 1 k ¼ 2 k ¼ 3

N ¼ 28,600

Ain 15.62 15.50 16.07 13.81 13.55 1.09 5.49 7.16

AV
in 15.73 16.38 15.73 14.07 13.41 1.17 8.09 8.93

it 34 36 43 78 42 1609 250 204

itV 33 34 44 70 41 1414 179 148

N ¼ 42,189

Ain 21.83 21.83 24.45 16.75 19.48 18.90 12.80 12.16

AV
in 21.34 21.77 24.53 17.81 19.18 17.81 21.03 21.13

it 41 30 31 32 33 40 56 58

itV 41 30 32 32 34 43 37 39

JD with either fixed tolerance, sðcorrÞ, or variable tolerance sðcorrÞ ¼ 2�nðcorrÞit , are considered. The average number of inner iterations is

shown, Ain, together with the number of iterations, it. The superscript ‘‘V ’’ pertain to results with variable tolerance.

1 JDQR code was downloaded from the URL http://www.math.uu.nl/people/sleijpen/.
2 JDCG-N was downloaded from http://mnsgi.ulb.ac.be/pub/docs/jdcg/.

326 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331

http://www.math.uu.nl/people/sleijpen/
http://mnsgi.ulb.ac.be/pub/docs/jdcg/


though CG is expected to be more apt to SPD matrices than Bi-CGSTAB. Note that when N ¼ 152,207 and

N ¼ 216,000, a large difference between Ain produced by IC(0)-JDCG, and that one by IC(0)-JD, was
recorded. Such difference comes from unmatching convergence criteria. Bi-CGSTAB is stopped on the

preconditioned residual, while CG on the true residual, the latter turns out to be far larger than the former.

On the other hand the two stopping criteria are peculiar to standard implementations of each scheme, thus

it is reasonable to make the comparison on this ground.

Table 10 reports a measure of the computational costs of three JD variants by showing the number of

matrix–vector multiplications (MVM) plus the number of IC(0) preconditioner applications. Their mean

values show that, on average, our JD code well compares with JDCG-N by Y. Notay. Incidentally, the

latter code performs better on the N ¼ 216,000 FD matrix, and worse on the N ¼ 28,600 FE matrix. In his
paper [29], Notay tests his code on a similar FD matrix. Though in principle it is not the best choice for

SPD problems, on average JDQR code by Sleijpen performs better. Again, theoretical results do not agree

with experience on real-life problems.

4.2. Parallel JD

A standard data-parallel implementation of JD was performed.

Note that IC(0) preconditioning is not easily parallelized. Jacobi(k) and FSAI are not robust enough to be
worth exploiting. Taking these factors into account, and the discussion in the previous section, to analyze

all our matrices we run AINV–JD, setting � ¼ 0:1.
We tailored the implementation of the MVM needed (Av, Zv, ZTv), for application to sparse matrices,

using a technique for minimizing data communication between processors [7,11].
We performed parallel runs on the T3E 1200 machine of CINECA Consortium, which was located in

Bologna, Italy. The machine was a stand alone system made by a set of DEC-Alpha 21164 processors. They

performed at a peak rate of 1200 Mflop/s, and they were interconnected by a 3D toroidal network which

had a 480 MB/s payload bandwidth along each of 6 torus directions. There were 256 processing elements,

half of them having a 256-MB RAM, the other half a 128-MB RAM.

Again the initial vector was set to V:;0 ¼ ð1; . . . ; 1ÞT.
We performed p-processor runs, when p ¼ 1; 2; 4; 8; 16; 32.
Define the speedup, Sp, and efficiency, Ep, as

Sp ¼ T1=Tp; Ep ¼ Sp=p; p ¼ 1; 2; 4; 8; 16; 32:

Table 11 shows the CPU seconds and speed-up recorded when running our AINV–JD code. Fig. 1
displays its efficiency. For a given p > 4, it usually increases with the size of the problem. Problem 3

(N ¼ 80,711) violates this rule; as an explanation, we must remember that with respect to problems 1 and 2,

Table 10

Computation of s ¼ 10 eigenpairs using JD, JDQR, and JDCG-N

N JD JDQR JDCG-N

28,600 2523 2494 4128

42,189 2734 1307 1579

80,711 2134 2015 2042

152,207 753 1011 618

216,000 1759 1461 1441

Average 1980.6 1657.6 1961.6

IC(0) preconditioning was applied. Number of MVM plus number of applications of the preconditioner.

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 327



a higher number of non-zero elements in AINV(0.1) was recorded in problem 3 (see Table 4). Such

a feature, combined with the large bandwidth of AINV(0.1) in problem 3, inherited from that of A (see

Table 2), is likely to deteriorate the parallel performance of our MVM code.

Table 11, demonstrates that a satisfactory speed-up is produced, when the amount of data on each

processor is large enough. As an example, for problems 4 and 5 a fair speedup is obtained running on up to

p ¼ 32 processors.

As a comparison, let us consider PARPACK 3 code [26] (which was equipped with our AINV-CG

implementation as the inner solver), and a parallel implementation of our AINV–DACG code [7]. Table 11
reports, after [7], the time and speedup recorded when computing s ¼ 10 eigenpairs of four test matrices.

One can see that AINV–JD CPU seconds are far smaller than PARPACK ones. These results confirm those

in [10], where it was shown that (P)ARPACK is efficient when a large number (sP 40) of eigenpairs is

needed. On the other hand, AINV–JD times are substantially larger than AINV–DACG ones only when

the FD, N ¼ 216,000, matrix is analyzed. On average, AINV–JD and AINV–DACG times are quite similar,

suggesting that the efficiency of the former is appreciable, since it well compares with the latter one, which

was developed for SPD problems. With respect to our FD problem, AINV–DACG seems to be preferred,

taking into account that its eigenvalue computation sequence, also in presence of many multiple eigen-
values, usually matches ascending order. Concerning the speed-up values, the three codes display quite

similar degrees of parallelism, which can be ascribed to the fact they share the same parallel linear algebra

kernel.

5. Conclusions

The following points are worth emphasizing, concerning the performance of JD codes, when analyzing
our elliptic problems.

Table 11

CPU seconds, Tp, spent for computing s ¼ 10 eigenpairs on p processors by AINV–JD

N T1 T2 T4 T8 T16 T32 S2 S4 S8 S16 S32

AINV–JD

28,600 68.4 38.0 20.8 12.8 8.6 6.9 1.8 3.3 5.3 8.0 9.9

42,189 111.6 58.5 34.2 19.1 13.0 10.2 1.9 3.3 5.8 8.6 10.9

80,711 365.8 216.3 141.9 85.4 64.1 48.9 1.7 2.6 4.3 5.7 7.5

152,207 3003.5 1594.2 844.5 458.1 276.0 191.9 1.9 3.6 6.6 10.9 15.7

216,000 767.0 402.2 207.8 113.8 66.5 40.2 1.9 3.7 6.7 11.5 19.1

ARPACK

28,600 245.8 128.7 71.0 41.5 27.9 23.4 1.9 3.5 5.9 8.8 10.5

42,189 203.6 106.8 58.6 33.2 20.7 14.2 1.9 3.5 6.1 9.8 14.3

80,711 997.7 593.9 377.1 234.6 164.2 136.9 1.7 2.6 4.3 6.1 7.3

216,000 787.7 397.7 209.8 114.3 66.7 43.1 2.0 3.8 6.9 11.8 18.3

AINV–DACG

28,600 122.7 66.5 37.0 21.5 13.6 10.6 1.8 3.3 5.7 9.0 11.6

42,189 106.2 56.0 29.6 17.6 10.5 8.5 1.9 3.6 6.0 10.1 12.5

80,711 379.6 230.1 165.1 101.9 70.1 51.8 1.6 2.3 3.7 5.4 7.3

216,000 644.7 339.4 176.4 95.2 53.5 31.5 1.9 3.7 6.8 12.1 20.5

On four test matrices, the CPU seconds spent by PARPACK and AINV–DACG are shown. The speedups Sp, are also reported.
The results for the latter two codes are excerpts from [7].

3 Release 1, 1996.

328 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331



• Our sequential computations show that AINV is usually an effective preconditioner for Jacobi–Davidson.

When both AINV and FSAI yield convergence, they display similar performances. However, AINV is

more robust than FSAI and Block-Jacobi, hence it is our recommended choice for parallel computations.

• With respect to fixed tolerance in the solution of the correction system, the 2�nit tolerance proposed in

literature, does not improve the performance of JD.

• When the smallest eigenpairs are required, and quite a large tolerance is allowed, which is usual in real-

life problems, JD does not necessarily compute the eigenvalues in ascending order. Moreover, the se-

quence heavily depend on the preconditioning technique.
• A parallel JD implementation, based upon data-parallel techniques, records a satisfactory speedup,

when the number of processors is not too large with respect to the amount of data to be managed.

• A performance comparison of AINV–JD with PARPACK and AINV–DACG codes shows that they

can display quite the same parallel efficiency, while on the ground of mere CPU times AINV–JD appears

to be particularly apt to solve our FE and MFE eigenproblems.

Acknowledgements

This work has been supported in part by INDAM-GNCS and MURST Italian project Mathematical

Models and Numerical Methods for Environmental Fluid Dynamics. The authors thank the anonymous

referees for suggesting valuable modifications to the draft, which improved the paper.

References

[1] E.C. Anderson, Y. Saad, Solving sparse triangular systems on parallel computers, Int. J. High Speed Comput. 1 (1989) 73–96.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems:

A Practical Guide, SIAM, Philadelphia, PA, 2000.

Fig. 1. Efficiency, Ep, of our parallel code, for p ¼ 2; 4; 8; 16; 32.

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 329



[3] K.J. Bathe, E. Wilson, Solution methods for eigenvalue problems in structural dynamics, Int. J. Numer. Methods Eng. 6 (1973)

213–226.

[4] M. Benzi, C.D. Meyer, M. T�uuma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci.

Comput. 17 (1996) 1135–1149.

[5] L. Bergamaschi, G. Gambolati, G. Pini, Asymptotic convergence of conjugate gradient methods for the partial symmetric

eigenproblem, Numer. Linear Algebra Appl. 4 (1997) 69–84.

[6] L. Bergamaschi, G. Gambolati, M. Putti, Iterative methods for the partial symmetric eigenproblem, in: Proceedings of the 2000

Copper Mountain Conference on Iterative Methods, April 3–7, 2000.

[7] L. Bergamaschi, G. Pini, F. Sartoretto, Approximate inverse preconditioning in the parallel solution of sparse eigenproblems,

Numer. Linear Algebra Appl. 7 (2000) 99–116.

[8] L. Bergamaschi, G. Pini, F. Sartoretto, Parallel preconditioning of a sparse eigensolver, Parallel Comput. 27 (2001) 963–976.

[9] L. Bergamaschi, M. Putti, Mixed finite elements and Newton-like linearization for the solution of Richard�s equation, Int. J.
Numer. Methods Eng. 45 (1999) 1025–1046.

[10] L. Bergamaschi, M. Putti, Numerical comparison of iterative eigensolvers for large sparse symmetric matrices, Comp. Methods

Appl. Mech. Eng. 191 (2002) 5233–5247.

[11] L. Bergamaschi, M. Putti, Efficient parallelization of preconditioned conjugate gradient schemes for matrices arising from

discretizations of diffusion equations, in: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific

Computing, March, 1999 (CD–ROM).

[12] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Comput. 21 (2000)

1804–1822.

[13] E. Chow, Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns,

Int. J. High Performance Comput. Appl. 15 (2001) 56–74.

[14] T. Ericsson, A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized

symmetric eigenvalue problems, Math. Comp. 35 (1980) 1251–1268.

[15] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14

(1993) 470–482.

[16] G. Gambolati, A. di Monaco, G. Galeati, F. Uliana, P. Mosca, C. Mascardi, New approaches and applications in subsurface flow

modeling: 3-D finite element analysis of dewatering for an electro-nuclear plant, in: E. Custodio (Ed.), Groundwater Flow and

Quality Modelling, D. Reidel Publishing Company, Dordrecht, 1988, pp. 717–759.

[17] M. Genseberger, G. Sleijpen, H. Van der Vorst, Using domain decomposition in the Jacobi–Davidson method. Universiteit

Utrecht, Preprint 1164, October 2000.

[18] D. Hysom, A. Pothen, A scalable parallel algorithm for incomplete factor preconditioning, SIAM J. Sci. Comput. 22 (2001) 2194–

2215.

[19] M.T. Jones, P.E. Plassman, Solution of large, sparse systems of linear equations in massively parallel applications, in: Proceedings

of Supercomputing�92, IEEE Computer Society Press, Silver Spring, MD, 1992, pp. 551–560.

[20] M.T. Jones, P.E. Plassman, Scalable iterative solution of sparse linear systems, in: G.J. George, J.W.H. Liu (Eds.), Graph Theory

and Sparse matrix Computation, IMA Volumes on Mathematics and Its Applications, vol. 56, Springer, Berlin, 1993, pp. 229–

245.

[21] A.V. Knyazev, A.L. Skorokhodov, The preconditioned gradient-type iterative methods in a subspace for partial generalized

symmetric eigenvalue problem, SIAM J. Numer. Anal. 31 (1994) 1226–1239.

[22] L.Yu. Kolotilina, A.Yu. Yeremin, Factorized sparse approximate inverse preconditioning I. Theory, SIAM J. Matrix Anal. Appl.

14 (1993) 45–58.

[23] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res.

Nat. Bur. Standard 45 (1950) 255–282.

[24] R.B. Lehoucq, D.C. Sorensen, Deflation techniques for an implicit restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17

(1996) 789–821.

[25] M. Magolu Monga Made, H.A. van der Vorst, Parallel incomplete factorizations with pseudo-overlapped subdomains, Parallel

Comput. 27 (2001) 989–1008.

[26] K.J. Maschhoff, D.C. Sorensen, A portable implementation of ARPACK for distributed memory parallel architectures, in:

Proceedings of the Copper Mountain Conference on Iterative Methods, vol. 1, April 9–13, 1996.

[27] J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric

M-matrix, Math. Comp. 31 (1977) 148–162.

[28] R.T. Mills, A. Stathopoulos, E. Smirni, Algorithmic modifications to the Jacobi–Davidson parallel eigensolver to dynamically

balance external CPU and memory load, in: Proceedings of the International Conference on Supercomputing 2001, Sorrento,

Italy, June 18–22, 2001, pp. 454–463.

[29] Y. Notay, Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem, Numer. Linear

Algebra Appl. 9 (2002) 21–44.

330 L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331



[30] C.C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl. 10 (1972) 373–381.

[31] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, MA, 1996.

[33] F. Sartoretto, G. Pini, G. Gambolati, Accelerated simultaneous iterations for large finite element eigenproblems, J. Comp. Phys.

81 (1989) 53–69.

[34] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17

(1996) 401–425.

[35] G.L.G. Sleijpen, H.A. Van der Vorst, E. Meijerink, Efficient expansion of subspaces in the Jacobi–Davidson method for standard

and generalized eigenproblems, ETNA 7 (1998) 75–89.

[36] A. Stathopoulos, Y. Saad, K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM

J. Sci. Comput. 19 (1998) 227–245.

[37] J. Van den Eshof, The convergence of Jacobi–Davidson iterations for Hermitian eigenproblems, Numer. Linear Algebra Appl. 9

(2002) 163–179.

[38] H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear

systems, SIAM J. Sci. Stat. Comput. 13 (1992) 631–644.

[39] K. Wu, Y. Saad, A. Stathopoulos, Inexact Newton preconditioning techniques for large symmetric eigenvalue problems, Electron.

Trans. Numer. Anal. 7 (1998) 202–214.

L. Bergamaschi et al. / Journal of Computational Physics 188 (2003) 318–331 331


	Computational experience with sequential and parallel, preconditioned Jacobi-Davidson for large, sparse symmetric matrices
	Introduction
	Preconditioned Jacobi-Davidson algorithm
	Preconditioners
	Numerical results
	Sequential JD
	Parallel JD

	Conclusions
	Acknowledgements
	References


